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1 Introduction

Presidential Decision Directive 63 identified water systems as one of the critical infras-
tructures to the United States. Following this directive and the passing of The Public
Health, Security, and Bioterrorism Preparedness and Response Act there has been in-
creased research effort in both assessing the vulnerability of drinking water systems and
proposing protection measures. Drinking water networks are vulnerable to chemical and
biological contamination. While physical security is being used to limit access to some
potential contamination locations, due to the distributed nature of drinking water net-
works, many locations remain unprotected. One proposed method of protection is the
installation of an early warning detection system. Sensors installed at various locations
throughout the drinking water network could warn utilities companies in the event of a
contamination.

On its own, an early warning detection system [7, 1], provides only a coarse measure
of the time and location of the contamination event. In previous work [5, 4, 13] the
authors introduced a large scale nonlinear programming approach that used real-time
concentration information from an installed sensor grid to accurately determine the time
and location of the contamination event. This approach introduced unknown, time
dependent injection terms at every node in the network and formulated a quadratic
program to solve for the time profiles of the injections. The objective function was
a least squares minimization of the errors between the calculated and measured node
concentrations at the sensor nodes with a regularization term to force a unique solution.
The constraints in the optimization problem were the partial differential equations of
the water quality model for the network. In Laird et al. [5] this problem was then
discretized with a fully simultaneous approach, using an origin tracking algorithm to
characterize the pipe time delays and remove the need to discretize along the length
of the pipes. The resulting large scale nonlinear program was solved using a nonlinear
interior point code, IPOPT [14]. This approach was effective at identifying a family of
possible injection scenarios.

The unregularized formulation of the source inversion problem can have many non-
unique solutions. The regularized formulation, on the other hand, has a unique solu-
tion, but this solution is essentially linear combination of possible injection scenarios.
With this approach alone, it is difficult to determine if the observed contamination was
caused from a single injection location or multiple locations. In this work, we propose a
problem reduction technique and formulate a mixed integer quadratic program (MIQP)
to identify unique injection scenarios. This formulation includes constraints that fur-
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ther limit the solution space and allows us to distinguish between single and multiple
injection locations.

Section 2 gives a brief description of the formulation presented in [5], followed by a
discussion of solution non-uniqueness and how this manifests in the regularized problem.
In Section 3 we introduce the mixed integer formulation and show how the problem size
can be reduced drastically using active-set information from the original continuous
problem. We show the effectiveness of this approach on a real municipal water network
in Section 4. Here we test both single and multiple location injection scenarios. Finally,
we present some conclusions and directions for future work.

2 Background

The purpose of the work in [5] was to present a formulation for solving the inverse
problem of identifying the time and location of contaminant injections in real-time,
using concentration information from a sparse sensor grid. This work assumed that
contaminations occurred at network nodes and introduced unknown, time dependent
contaminant injections at each node in the network. The optimization problem was then
written as a weighted least squares minimization of the errors between the calculated
and measured concentrations subject to the constraints of the water quality model. As
with water quality simulation techniques [12, 15, 10], this approach assumed that the
network flows are known inputs and modeled the water quality only. The solution to
the least squares problem provides the complete time dependent profiles of the unknown
mass injections at every node that give rise to the best weighted least squares match of
the observed data.

In Laird et al. [5] an origin tracking algorithm was presented to characterize the pipe
time delays and remove the need to discretize in space. Following this reduction, the
remaining problem was then discretized in time alone, producing a nonlinear program
of reasonable size. Using Θ to refer to the set of discretizations in time, and P and
N to refer to the compete set of network pipes and nodes, respectively, the original
continuous quadratic program (OCQP) for the inversion problem can be formulated as
[5],

min
c̄,c,m

f =
1
2

[c− c?]T W [c− c?] +
ρ

2
mT m (1)

s.t. c̄− Pc = 0, (2)
N̄ c̄ + Nc + Mm = 0, (3)

m ≥ 0, (4)

where c̄=
[
· · · c̄I

i,j , c̄
O
i,j · · ·

]
,∀i ∈ P, j ∈ Θ is a vector of pipe concentrations for the inlet

(I) and outlet (O) of every pipe, discretized in time, c= [· · · ci,j · · · ] ,∀i ∈ N , j ∈ Θ is
the vector of calculated concentrations for every node at every time discretization, and
m= [· · ·mi,j · · · ] ,∀i ∈ N , j ∈ Θ is the vector of unknown contaminant mass injections
for every node at every time discretization. The matrix P is defined by the origin
tracking algorithm, and the matrices N̄ , N , and M are the Jacobians of the discretized
mass balance constraints (for junctions and storage tanks) with respect to the pipe con-
centrations, node concentrations, and unknown injections, respectively. The diagonal
matrix W is a weighting matrix for the least squares errors, with nonzero elements only
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Figure 1: Grid Network Example. A
small symmetric grid network with
sensors installed at every second node,
indicated by the shading.
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Figure 2: Grid Network Example Solution.
Solution of problem (1-4) on the grid network
with an injection from node 13 at t = 0.5
hours.

for sensor nodes at sample times. The integral of the absolute value of flow through
the corresponding node is used for the nonzero elements. This provides a flow based
weighting and shifts the least squares error from a concentration basis to a mass basis.

The second term in the objective is a regularization term that forces a unique solution
to the problem. First, consider the unregularized case. With ρ=0 problem (1-4) is a
convex (not necessarily strictly convex) quadratic program; therefore, the QP solution
is a global minimum for the objective value, but the minimizer it is not necessarily
unique. Consider the grid network shown in Figure 1 with sensors installed at every
second node (indicated by the grey shading) and a single reservoir water source at node
26. Network flows are constant in the directions indicated by the arrows with demands
at the boundary nodes only. These demands were selected to introduce symmetry about
an axis through nodes 1 and 26 and time delays that range 0.5 to 5 hours. Selecting
node 13 as the injection location, we introduce contaminant from time, t = 0.5 to
t = 1 hours. With the flows used in this network, the contaminant will flow from
node 13 to nodes 12 and 8 in about an hour and a half, where the sensors will then
detect the contaminant. If we consider only the observed concentration measurements
at nodes 8 and 12 (and zero concentration measurements from the other sensors), we
see two possible injection scenarios capable of producing the observed concentrations.
The contaminant could have been injected at node 13 (the actual injection) or at both
nodes 8 and 12 simultaneously. As well, any linear combination of these two scenarios
is also a possible solution to the unregularized problem.

There are an infinite number of solutions to the unregularized problem. With a small
positive value for ρ, however, the QP obtains a unique regularized solution. Laird et al.
[5] demonstrate the source inversion capability on the grid network example described
above. Simulating the injection from node 13 with EPANET [11] and using the origin
tracking algorithm to describe the pipe time delays, the authors formulate problem (1-4)
with ρ=1 · 10−4, 5 minute timesteps, and a time horizon of 4 hours (48 timesteps). The
optimization problem was written in AMPL [3] format by a software tool that reads the
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EPANET input and output files. This AMPL problem was then solved using IPOPT [14]
and the solution is shown in Figure 2. This figure shows the time profiles for the non-zero
mass injections only with time in hours along the abscissa and the mass flowrate of the
injections along the ordinate. As expected, we see that nodes 8, 12, and 13 all contribute
injection profiles to the solution. The effect of the regularization term is apparent.
The solution given is a linear combination of the two solutions discussed above. With
the simplicity of the grid network topology and flow patterns, it is straightforward for
us to examine Figure 2 and see the two solutions of interest, namely an injection at
node 13 at t = 0.5 hours, or a simultaneous injection at nodes 8 and 12 at t = 2
hours. Unfortunately, for a more complex network, with time varying flow patterns,
interpreting these solution profiles is non-trivial.

The existence of non-unique solutions is unavoidable, as they are a direct function of
the incomplete sensor configuration. The regularized OCQP gives only one regularized
solution. The unique scenarios that give rise to this linear combination need to be
inferred. Knowing only that the contaminant could have been injection at node 8, 12,
or 13 (or any combination) does not allow us to prioritize the locations or determine their
individual likelihood. Given the knowledge that a single injection from node 13 could
produce the observed concentrations, we would likely investigate this location first, as
opposed to nodes 8 and 12, where simultaneous injections are required. Furthermore,
while it is important to identify when a contamination event could have occurred from
a single location, it is even more important to identify when this is not possible. We are
particularly interested in immediately identifying when contamination events involve
multiple injection locations.

3 Mixed Integer Formulation

In this section, we introduce an approach that not only indicates when multiple injec-
tions are likely, it also provides the time and location of each injection. We propose
an algorithm that uses a mixed integer quadratic programming (MIQP) formulation to
search the space of solutions provided by the OCQP, (1)-(4). The mixed integer for-
mulation allows us to include discrete constraints on the problem, such as limiting the
number of injection locations and provides more information than the OCQP solution
alone. Consider the mixed integer reformulation of (1)-(4),

min
c̄,c,m

f =
1
2

[c− c?]T W [c− c?] (5)

s.t. c̄− Pc = 0, (6)
N̄ c̄ + Nc + Mm = 0, (7)

Lyi ≤ mi,j ≤ Uyi, ∀i ∈ N , j ∈ Θ, (8)∑
i∈N

yi = n. (9)

Here, yi ∈ {0, 1} is a binary variable, n is a parameter representing the number of
injection locations. The parameters L and U correspond to the nonzero detection limit
and an upper bound on the injection variables, respectively. Problem (5)-(9) has the
same number of continuous variables as the OCQP and the number of binary variables
equals the number of nodes in the network. However, since our goal is to search the
space of solutions arising from the OCQP, we do not need to formulate the MIQP with
the full space of variables.
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Consider the grid network problem presented in Section 2. With 26 nodes and 48
timesteps, this problem has 1248 continuous mass injection variables (one for each node
at each timestep). If we look at the solution of the OCQP given in Figure 2, we
immediately notice that most of the bound constraints (4) are active, meaning that
the majority of the mass injection variables are at their lower bound of zero. In this
example, there are only 18 nonzero mass injection variables (6 timesteps for each of the
3 nodes). Furthermore, there are only 3 nodes represented in the solution, 8, 12, and
13. To search within the solution space of the OCQP, we only need to consider nonzero
mass injection variables and only the reduced set of node locations.

Therefore, if we first solve the OCQP and identify the injection variables that are zero
(or below some detection limit), we can remove these variables and formulate the mixed
integer problem in the space of the nonzero variables only. Let mr refer to the set of
mass injection variables that were inactive4 at the solution of the OCQP. The set Nr

contains all the nodes represented by this selection of mass injection variables. The set
(Θr)i contains the timesteps of the selected injection variables for node i. With this

notation, mr =
[
· · · (mr)i,j · · ·

]
,∀i ∈ Nr, j ∈ (Θr)i. Defining Mr as the columns of

M in the space of mr, we let Ar=− (N̄ · P + N)−1Mr, we further reduce the problem
by removing the pipe and node concentrations. Defining m?

r as the solution of the
original problem in the space of the selected variables only, we introduce a new variable,
∆mr=mr − m?

r . Since the value of the regularization parameter ρ is small, we can
neglect the regularization term and, using the reductions described above, rewrite the
objective function (1) as,

1
2

[Ar(m?
r + ∆mr)− c?]T W [Ar(m?

r + ∆mr)− c?]

=
1
2

[Arm
?
r − c?]T W [Arm

?
r − c?]

+ [Arm
?
r − c?]T W [∆mr] +

1
2

[Ar∆mr]
T W [Ar∆mr] . (10)

The term 1
2 [Arm

?
r − c?]T W [Arm

?
r − c?] is constant and, from the optimality conditions

for the original problem, we know that [Arm
?
r − c?]T W=0 (the multipliers for the in-

active bound constraints are all zero). Therefore, both of these terms can be removed
from the objective and we write the reduced form of problem (5)-(9) as,

min
mr

f̂ =
1
2

[∆mr]
T Q [∆mr] (11)

s.t. Lyi ≤ (m?
r + ∆mr)i,j ≤ Uyi, ∀i ∈ Nr, j ∈ (Θr)i , (12)∑

i∈N
yi = n, (13)

where, Q=AT
r WAr. The matrix Ar can be calculated by perturbing each element of

mr and simulating to find the response on c. Formulation (11-13) is a Mixed Integer
Quadratic Program (MIQP) and forms the base problem for our refinement of solutions.

In addition to constraint (13) which limits the space of solutions to those with n injection
locations, we can also add integer cuts [2] eliminating unlikely scenarios or previously

4With an interior point method, the active variables will not be pushed completely to their bounds
and we must select the active set using a small tolerance.
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Table 1: Enumerated Solutions to Grid Network Example.

Solution No. Objective Value n y8 y12 y13

1 0.000 1 0 0 1
2 0.000 2 1 1 0
3 0.000 3 1 1 1
4 1.439 2 0 1 1
5 1.439 2 1 0 1
6 169.9 1 1 0 0
7 169.9 1 0 1 0
8 339.7 0 0 0 0

visited solutions. To cut a particular combination of injections from the solution space,
define Y1 to be the set of yi variables that are one and Y0 to be the set of binary variables
that are zero. We can then add the cut,∑

i∈Y1

yi −
∑
i∈Y0

yi = |Y1| − 1, (14)

to remove that particular combination from the set of possible solutions. Here, |Y1|
refers to the cardinality of Y1 (the number of elements in the set).

To show the effectiveness of this MIQP formulation, we again consider the grid network
example from Section 2 and formulate problem (11-13) using the solution of the OCQP,
shown in Figure 2. Since the number of injection locations in the solution is only 3, we
can completely enumerate all the possible combinations for the binary variables.

Table 1 shows all 8 enumerated solutions, sorted first by objective value and then by∑
i∈Nr

yi. Notice that the top entry in the table, Solution 1, tells us immediately that an
injection at node 13 alone is able to reproduce the observed data precisely. Considering
the possibility of two injection locations, the second solution with injections at node 8
and 12 together are also able to reproduce the data precisely. These numbers confirm
what we already know from the network topology and flow conditions. Solution 3
involves all three nodes and is equivalent to the solution from the OCQP. Solution 4,
appears to have a reasonable objective value with injections at both nodes 12 and 13. In
this case, the mass injection profile (not shown) for node 12 is at its lower bound, L for
all timesteps considered. The solution matches the data well with the injection at node
13, and then adds as little as possible from node 12. Increasing the value of L will force
an increase in the objective value for this case. The same is true for Solution 5 with
node 8 and 13. Nevertheless, we need not be concerned since better objective matches
have been seen with node 13 alone. Solutions 6 and 7 shows that a single injection at
node 8 or node 12 is not able to match the observed data.

For larger problems, we do not enumerate all the possible combinations. Instead, we
set a particular value for the number of injection locations, n, and evaluate the MIQP
repeatedly, searching for good solutions. Starting with n=1 we find all solutions that
provide a reasonable match, excluding each previous solution as we proceed. We then
increase n and continue. Our recommended approach for solving the source inversion
problem and identifying the significance of solutions is as follows.
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Algorithm 1

1. Solve the OCQP:
Given sensor and flow data, formulate and solve the OCQP, as described in Laird
et al. [4, 5]. Identify the set of selected nodes and timesteps for Nr and (Θr)i ,∀i ∈
Nr.

2. Calculate Q:
Each column in Ar is the gradient of the vector c with respect to a particular
entry in mr. Set all the entries of mr to zero except for one, and solve the forward
problem. The values of c from the simulation form a column of Ar. Performing the
perturbation for each i ∈ Nr, j ∈ (Θr)i gives us the entire matrix Ar. Calculate
Q=AT

r WAr.

3. Formulate the base MIQP:
Select reasonable upper and lower bounds U , and L, for the injection variables
and formulate the mixed integer quadratic program (11-13). This problem forms
the base MIQP.

4. Find reasonable upper bound on the objective, f̂ :
Force all injections to zero by setting n=0. Solve the base MIQP to find f̂ for
the case where injection variables are all zero. Since this represents a reasonable
upper bound on the objective, store the objective value as f̂0.

5. for each n=1..|Nr|:

5.1. Initialize the problem for the current value of n:
Set f̂=0 and formulate the base MIQP for n injection locations.

5.2. while (f̂/f̂0 < ε) :5

5.2.1. Solve the MIQP:
Solve problem (11)-(13) with any additional integer cuts and record the
values of the binary variables and the objective. Store the value of the
objective in f̂ .

5.2.2. Exclude previous solution:
Add the integer cut (14) for the values of the binary variables from the
last solution. Return to Step 5.2 to continue finding new solutions for
the current value of n.

Upon completion of this algorithm all the possible solutions with objective values less
than ten percent of f̂0 will be recorded. One can then examine these solutions to
determine which injections correspond to likely scenarios.

4 Results

In this section, we demonstrate the effectiveness of Algorithm 1 and the MIQP formula-
tion using a real municipal water network model. We simulate two injection scenarios,
one with a single injection location and one with two injection locations. We then

5The parameter ε represents the limit on f̂/f̂0 and is set to 0.1 in this study.
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perform Algorithm 1 on both these scenarios, demonstrating that this approach is ca-
pable of distinguishing between the single injection scenario and the multiple injection
scenario.

We test the approach on a real municipal water network with approximately 500 nodes
and 600 links, shown in Figure 3. We select 50 sensor nodes based on a weighted random
selection. In this selection, we first assign a weight to each node, using the total volume
of water that has flowed through each node over a simulated 16 hour period. To ensure
we do not skew the selection drastically, any node with a weight that is less than five
percent of the maximum weight is set to this lower bound. We then randomly sample
this distribution 50 times to select the sensor nodes.

Figure 3: Real Municipal Water Network:
The network model showing the four nodes of
interest, A, B, C, and D. The physical locations
of all the network nodes have been shifted, but
the connectivity remains true.

In Test 1, we simulate an hour long
contamination from node A at t=1
hour. In Test 2, we keep this contam-
ination event and add another hour
long injection from node D, also at
time t=1 hour. Performing Algo-
rithm 1, we first formulate and solve
the OCQP. The solution of OCQP
for both of these tests is not shown
since they contain such a large num-
ber of injection nodes. For Test 1,
the solution of the OCQP indicates
10 nodes and 73 injection variables to
consider (3 nodes with 13 timesteps,
6 nodes with 5 timesteps, and one
node with 4 timesteps). In Test 2,
the scenario with two injection loca-
tions, there are 13 nodes and 79 in-
jection variables to consider (one node
with 13 timesteps, 3 nodes with 12
timesteps, 2 nodes with 5 timesteps,
4 nodes with 4 timesteps, and 3 nodes
with 2 timesteps).

Using the solutions from the OCQP
we formulate the base MIQP in AMPL [3] format. We then continue the algorithm,
using the NEOS Server for Optimization (www-neos.mcs.anl.gov) where each MIQP
was solved with the mixed integer, nonlinearly constrained algorithm, MINLP branch
and bound solver by Fletcher and Leyffer [6].

Figures 4 and 5 show all the recorded solutions from Algorithm 1. The horizontal
axis shows n, the number of allowed injection locations, and the vertical axis shows
the fractional objective value for each solution on a log scale. Many different solutions
may have the same objective values and points may overlap in these figures. With the
approach outlined in Algorithm 1, we have a column of solutions for each value of n.
For Test 1 there are single injection solutions that provide a reasonable match. For
Test 2, the two injection contamination scenario, there are no single injection solutions
that match the observed data. This immediately tells us that we have a situation with
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Figure 4: Recorded Solutions for Test 1.
Results of Algorithm 1 for the contamina-
tion scenario with a single injection loca-
tion.
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Figure 5: Recorded Solutions for Test 2.
Results of Algorithm 1 for the contamina-
tion scenario with two injection locations.

multiple injections and demonstrates the ability of this approach to differentiate single
location contaminations from multi-location contaminations.

While Figures 4 and 5 indicate the number of likely injection locations, they do not
show us the nodes involved in the injections. This information was recorded in the
algorithm, however, and Tables 2 and 3 summarize the solutions near the lower left
corner of Figures 4 and 5. The results in Table 2 show three single injection solutions
that match the observed data (the fractional objective values are all under one percent).
These three are neighboring nodes in the network and, with no sensor between them, are
indistinguishable with the observed data. These results indicate that a single injection
location is possible at any one of these three locations. Even more encouraging are
the results for Test 2, shown in Table 3. In this test, we simulated two injections, one
from Node A and one from node D. The results show that there are no single injection
scenarios that could have produced the observed data (the best fractional objective for
a single injection solution is almost fifty percent). On the contrary, there are three
solutions with two injection locations that match the data. Table 3 shows that all
three solutions with two injection locations include node D. We also know from Test 1
that nodes A, B, and C are indistinguishable with the selected sensor layout. It is not
surprising then, that the three solutions that match the data are node A with D, node
B with D, and node C with D. Considering only the results from the solution of the
OCQP, we could not determine if the contamination was the result of a single injection
or multiple injections. With the mixed integer analysis on Test 2, however, we can
immediately see that there are multiple injection sites to consider, and, with surety, we
know which sites we should immediately investigate.

5 Conclusions and Future Work

These results demonstrate that the MIQP formulation and the algorithm presented are
extremely effective at identifying unique solutions from the family of solutions provided
by the original problem (OCQP). The approach is able to identify unique solutions
and find good solutions with a minimum number of injection locations. The greatest
strength of this approach, however, is its ability to distinguish multiple injections. The
results clearly show, for the scenarios considered, that the two injection scenario was
distinguishable from single injection scenario and the injection locations were identified
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Table 2: Detailed Results for Test 1
n Frac. Obj. Comment
1 0.001 yA=1, others 0
1 0.001 yC=1, others 0
1 0.020 yB=1, others 0
2 0.001 yA=1a

...
...

...

aOne of the other nodes, not shown in Figure
3 has a value of 1, all others 0.

Table 3: Detailed Results for Test 2

n Frac. Obj. Comment
1 0.473 yD=1, others 0
2 0.014 yC=yD=1, others 0
2 0.014 yA=yD=1, others 0
2 0.024 yB=yD=1, others 0
2 0.465 yD=1a

aOne of the other nodes, not shown in Figure
3 has a value of 1, all others 0.

as accurately as possible with the sparse sensor layout.

Furthermore, the general MIQP takes only minutes to formulate (dominated by the
calculation of Q) with a computational complexity that is linear in the number of
selected injection variables. Tables 2 and 3 only show a portion of the number of
problems that were solved. For completeness, we enumerated the entire set of possible
binary variables and each MIQP solved in under a second. These favorable computation
results make this approach reasonable for a real-time setting.

While these results are very encouraging, both in their effectiveness and their compu-
tational effort, they only represent two injection scenarios. It remains for us to analyze
the behavior of the MIQP approach and Algorithm 1 on additional injection scenarios.
It will also be interesting to see how well the approach can differentiate injections from
more than two locations.

In all tests, the sensor data was simulated and the demands were characterized perfectly.
In a real life situation, the sensor data will be noisy and the demands will only be
loosely characterized. We need to develop a framework to perform the source inversion
considering the uncertainty associated with these parameters. For this we propose to
use a multi-scenario framework, where a single optimization problem is formulated with
a large number of scenarios, each being a statistical sample from the expected demand
distributions. The injection variables will be common across each of these scenarios
and a solution of this problem will yield an expected value for the injection variables
under the uncertainty of the demands. This approach has been previously described
for the design of chemical plants under uncertain conditions in Rooney and Biegler [9].
While the optimization problem grows linearly with the number of scenarios considered,
the structure of the linear system solved at each iteration of the optimization can be
exploited to provide efficient solutions for a very large number of scenarios. Furthermore,
great performance gains can be made by solving this system in parallel. We believe
that this is the next critical step in solving the problem of effective source inversion in
drinking water networks.
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